Experimental Investigation of Solids Production Mechanisms in a Hydraulic Screen-Through Fracturing Well in a Loose Reservoir and Its Control

Author:

Dilimulati Saifula1ORCID,Dong Changyin2ORCID,Zhan Xinjie3ORCID,Li Jingwei3ORCID,Cui Guoliang4ORCID,Liu Quangang4ORCID,Bai Haobin3ORCID

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (East China); Research Institute of Engineering, Sinopec Northwest Branch Company

2. School of Petroleum Engineering, China University of Petroleum (East China); Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education (Corresponding author)

3. School of Petroleum Engineering, China University of Petroleum (East China); Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education

4. Engineering Technology Branch, CNOOC Energy Development Co., Ltd.

Abstract

Summary Successful cases of hydraulic screen-through fracturing (HSTF) in the Bohai oil field highlight the possibility that hydraulic fracturing can be an alternative method for enhancing the productivity of loose reservoirs. However, a portion of the HSTF wells in the Bohai oil field suffer from severe solids production, meaning that proppants and stratum sands are produced in the wellbore during production and cause wellbore plugging and ensuing debilitation of productivity. In this study, fluid flow amid the stratum, fracture, and HSTF well is simulated experimentally, and pressure drop, flow rate of the fracture, and stratum are monitored to investigate mechanisms and influencing factors of solids production from HSTF wells. Perspectives on solids control optimization are put forward for the Bohai oil field. Results indicate that the formation of an erosion cavity on lip-sealing in fracture and a dominant fluid channel near the wellbore in the stratum are two main mechanisms of solids production. The higher the flow rate and fluid viscosity are, the more severe solids production can be. For the Bohai oil field, with 725-psi-strength resin-coated proppant, the minimum proportion of resin-coated proppant in fractures to prevent solids production can be reduced from the previous 65% to 30%. With 1,073-psi-strength resin-coated proppant, it can be further reduced to 20%. Reducing the proportion of resin-coated proppant can help optimize the conductivity of fractures. This study aims to provide preliminary insight on solving the solids production problem of an HSTF well, thus enhancing the applicability of hydraulic stimulation in loose reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3