Fast Drilling Optimizer for Drilling Automation

Author:

Giftson Joy John Abish1,Samuel Robello2

Affiliation:

1. University of Southern California

2. Halliburton

Abstract

Abstract The rate of penetration (ROP) was optimized using a particle swarm optimization algorithm for real-time field data to reduce drilling time and increase efficiency. ROP is directly related to drilling costs and is a major factor in determining mechanical specific energy, which is often used to quantify drilling efficiency. Optimization of ROP can therefore help cut down costs associated with drilling. ROP values were chosen from real-time field data, accounting for weight on bit, bit rotation, flow rate variation along with bit wear. A random forest regressor was used to find correlations between the dependent parameters. The parameters were then optimized for the given constraints to find the optimal solution space. The boundary constraints for the ROP function were determined from the real-time data. The function parameters were optimized using a particle swarm optimization algorithm. This is a meta-heuristic model used to optimize an objective function for its maximum or minimum within given constraints. The optimization method makes use of a population of solution particles which act as the particle swarm. These particles move collectively in the given solution space controlled by a mathematical model based on their position and velocity. This model makes use of the best-known solution for each particle and the global best position of the system to guide the swarm towards the optimal solution. The function was optimized for each well, providing optimal ROP values during real-time drilling. A fast drilling optimizer is crucial to automate and streamline the drilling process. This simultaneous optimization of ROP based on real-time data can be implemented during the process thereby increasing the efficiency of drilling as well as reducing the required drilling time.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3