Successful Implementation of Torque and Drag Management Techniques in High Departure Wells is the Key to Safely Reach Wells Planned Total Depth in Offshore Artificial Islands

Author:

Diaz Nerwing1,Paila Phalgun1,Kirby Cliff1,Akl Bassam1,Mahmoud Dalia1,Al Kindi Rashid Khudaim2,Kasem Youssef2,Benygzer Mhammed2,Haddad Mohamed2,Leon Vicente3

Affiliation:

1. Baker Hughes, a GE company

2. ADNOC offshore

3. Drilltech Services

Abstract

Abstract Directional drilling from artificial islands has become a common offshore practice in the United Arab Emirates, looking to minimize footprint while optimizing cost to reach maximum number of targets from a single location. This drilling practice brings some challenges such as torque and drag limitations, which is vital in order to safely reach wells total depth in well profiles with a high departure. The purpose of this paper is to discuss in detail the successful implementation of torque reduction techniques, focused on case histories from an artificial offshore island in the United Arab Emirates. During the planning phase, Drilling Engineers estimate expected torque and drag for the different sections based on modeling and historical data, this process is key to assess the limitations and initiate the process of evaluating the different torque and drag reduction techniques to be implemented based on the application. The case histories presented in this paper show the successful implementation of proven torque and drag management techniques, such as; well profile optimization, torque reduction subs, deployment of lubricated mud, use of real-time directional data to minimize hole tortuosity, and deployment of Rotary Steerable Systems from top to bottom for improved hole quality. There are different factors considered in the planning phase that make torque and drag management crucial, but drill pipes torque limitation was the main challenge to overcome in order to reach planned total depth in the case histories discussed in this paper. Wells trajectory and BHA optimization played an important role during the execution phase, as well as the deployment of lubricated mud and torque reduction subs which in conjunction provided an overall surface torque reduction of up to 28%. The implementation of different torque and drag reduction methods are illustrated with the modeling results and actual drilling data collected during the drilling of these wells. Information and data discussed in this paper can serve as documentation to aid in the planning phase for wells with similar challenges.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3