Experimental Simulation of the Zones Preceding the Combustion Front of an In-Situ Combustion Process

Author:

Wu C.H.1,Fulton P.F.1

Affiliation:

1. U. of Pittsburgh

Abstract

Abstract A linear Berea sand pack, initially containing three phases -- oil, water and air - was used to simulate experimentally the processes in the zones from the water bank through the evaporation and visbreaking region. Simulations using such process parameters as oil composition, system pressure, parameters as oil composition, system pressure, and gas injection rate were conducted. Every simulation followed programmed ascending-temperature steps with each step being approximately isothermal. The relative importance of each mechanism causing nonisothermal liquid movement was quantitatively determined and liquid saturation distributions were obtained. Results of the experiments showed that gas stripping was one of the main mechanisms responsible for oil flow in the hot water bank and that steam distillation was the chief mechanism for the oil movement in the steam plateau. Both mechanisms were primarily controlled by oil composition, system pressure and gas injection rate. The oil- and water-saturation distributions were reconstructed from the experimental results. A first-order equation approximated the oil saturation in the regions simulated and a second-order equation approximated the water-saturation distribution. Introduction Laboratory experiments, mathematical models, and field tests have been widely used to investigate the in-situ combustion process. Invariably, the results of these investigations have confirmed that the complex in-situ process possesses a number of distinct transient regions of varying physical and chemical importance. physical and chemical importance. Mechanisms associated with each of these regions have been qualitatively described. In general, these descriptions are based on gross experimental observations such as production history, temperature profile, produced fluid properties, etc. These qualitative descriptions of properties, etc. These qualitative descriptions of in-situ mechanisms are principally sound, but the scarcity of quantitative demonstration of nonisothermal liquid behavior, liquid-saturation distribution and process parameter effects on the mechanisms demands further investigation. This paper attempts to provide some quantitative information on several important mechanisms associated with in-situ combustion. A simple linear laboratory model is used to simulate the processes in the regions, starting from the water bank and ending at the evaporation and visbreaking region, which immediately precede the cracking region and combustion front. The experimental results give oil- and water-saturation distributions which should be useful in mathematical simulation and oil recovery estimation. REGIONS OF IN-SITU COMBUSTION Kuhn and Koch observed at least four coexistent transient regions in their experimental work using linear combustion tubes. Tadema performed in-situ combustion in a glass tube and described the mechanisms that would take place in each of these transient regions. Wu estimated the relative length of these regions in a combustion tube process under various experimental conditions. process under various experimental conditions. A schematic diagram of these regions is shown in Fig. 1. These regions were discretely reconstructed based on the description of Tadema and liquid production and temperature histories at the outlet end of a typical combustion tube experiment (performed by the Gulf Research and Development Co.). Starting from the injection end, these regions may be designated as the burned zone, combustion zone, cracking region, evaporation and visbreaking region, steam plateau, water bank, oil bank and initial zone. Each region has definite temperature and fluid-saturation characteristics. SPEJ P. 38

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3