Abstract
Summary
Spontaneous and forced imbibition are recognized as important recovery mechanisms in naturally fractured reservoirs because the capillary force controls the movement of the fluid between the matrix and the fracture. For unconventional reservoirs, imbibition is also important because the capillary pressure is more dominant in these tighter formations, and a theoretical understanding of the flow mechanism for the imbibition process will benefit the understanding of important multiphase-flow phenomena such as waterblocking. In this paper, a new semianalytic method is presented to examine the interaction between spontaneous and forced imbibition and to quantitatively represent the transient imbibition process. The methodology solves the partial-differential equation (PDE) of unsteady-state immiscible, incompressible flow with arbitrary saturation-dependent functions using the normalized water flux concept, which is identical to the fractional-flow terminology used in the traditional Buckley-Leverett analysis. The result gives a universal inherent relationship between time, normalized water flux, saturation profile, and the ratio between cocurrent and total flux. The current analysis also develops a novel stability envelope outside of which the flow becomes unstable caused by strong capillary forces, and the characteristic dimensionless parameter shown in the envelope is derived from the intrinsic properties of the rock and fluid system, and it can describe the relative magnitude of capillary and viscous forces at the continuum scale. This dimensionless parameter is consistently applicable in both capillary-dominated and viscous-dominated flow conditions.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献