Integrated Approach in Deploying Low Salinity Waterflooding

Author:

Sorop T. G.1,Suijkerbuijk B. M.1,Masalmeh S. K.2,Looijer M. T.1,Parker A. R.1,Dindoruk D. M.3,Goodyear S. G.4,Al-Qarshubi I. S.1

Affiliation:

1. 1Shell Global Solutions International

2. 2Shell Technology Oman

3. 3Shell International Exploration and Production

4. 4Shell Global Solutions (UK)

Abstract

Abstract Low Salinity Waterflooding (LSF) is an emerging IOR/EOR technology that can improve oil recovery efficiency by lowering the injection water salinity. Field scale incremental oil recoveries are estimated to be up to 6% STOIIP. Being a natural extension of conventional waterflooding (WF), LSF is easier to implement than other EOR methods. However, the processes of screening, designing and executing LSF projects require an increased operator competence and management focus compared to conventional waterflooding. This paper discusses the practical aspects of deploying LSF in fields, focusing on the maturation stages, while highlighting the key success factors. LSF deployment starts with a portfolio screening against specific surface and subsurface screening criteria to prioritize opportunities. Next, the identified opportunities are run through reservoir conditions SCAL tests to quantify the LSF benefits, while de-risking the potential for any injectivity loss due to clay swelling or deflocculation. Standardized LSF SCAL protocols have been incorporated into the general WF guidelines, so that any suitable new WF project conducts LSF SCAL. For mature waterfloods, this SCAL program provides additional reservoir condition relative permeability data, enabling operating units to optimize well and reservoir management (WRM). The next steps in the process are production forecasting, facilities design, and project economics for the LSF opportunity. The multidisciplinary nature of LSF deployment requires integrated (sub)surface technology teams closely collaborating with R&D and asset teams. The standardization of the facilities design, including cost models, can significantly accelerate the deployment effort. In Shell, LSF is currently at different stages of deployment around the world and across the whole spectrum of WF projects, from the rejuvenation of brown fields to green field developments (offshore and onshore). The LSF deployment effort is combined with the screening of other EOR technologies, to identify where LSF may be able to unlock additional value by creating the appropriate conditions for subsequent chemical flooding.

Publisher

SPE

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3