A numerical investigation on thermal analysis of RPC based solar thermochemical reactor for two-step H2O splitting cycle for hydrogen production

Author:

SHARMA Jeet Prakash1ORCID,JILTE Ravindra1ORCID,KUMAR Ravinder1ORCID

Affiliation:

1. School of Mechanical Engineering, Lovely Professional University, Punjab, 144411, India

Abstract

Ceria based solar thermochemical cycle is a high-temperature based redox chemical reactions to split H2O or CO2to produce hydrogen and/or syngas. The redox reactions are carried out in a reactor cavity thus the analysis and optimization of design as well as thermal analysis is a crucial factor to improve the solar-to-fuel conversion efficiency. This paper proposes the hybrid design of cylindrical and hemispherical cavity and its effects of geometrical parame-ters such as reticulated porous ceria (RPC) thickness (15 mm, 20 mm, and 25 mm) and gas flow gap (5 mm&10 mm) on temperature and flux distribution and solar-to-fuel efficiency for both steady-state and transient condition. A numerical computational fluid dynamics (CFD) analysis is carried out to study heat and mass transfer as well as geometrical design consid-eration of the STCR cavity under SolTrace generated Gaussian distributed concentrated solar flux. Two-step water-splitting reaction in the Solar Thermochemical cavity reactor (STCR) using ceria (CeO2) has been modeled to explore the oxygen evolution/reaction rate and to estimate solar-to-fuel efficiency and its relationship with geometrical factors. The RPC of 25 mm thickness yields the highest oxygen evolution rate of 0.34 mL/min/gCeO2 and solar-to-fuel efficiencies are 7.82%, 12.07% and 16.18% for 15 mm, 20 mm and 25 mm of RPC thickness, respectively without heat recovery. The operating conditions and optimized geometric factors, based on result analysis and comparison, are discussed in detail.

Publisher

Journal of Thermal Engineering

Subject

Fluid Flow and Transfer Processes,Energy Engineering and Power Technology,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3