Design and Construction of a 700kWth High-Temperature Sodium Receiver

Author:

Coventry JoeORCID,Venn Felix,Potter Daniel,Asselineau Charles-AlexisORCID,Gardner WilsonORCID,Kim Jin-Soo,Logie WilliamORCID,McNaughton RobbieORCID,Pye John,Stein Wesley

Abstract

The Australian Solar Thermal Research Institute (ASTRI) has been developing technologies designed to collect and store solar energy at high-temperature to drive a new high-efficiency power block based on the supercritical CO2 Brayton cycle. ASTRI is pursuing two alternative pathways: one based on the use of liquid sodium as a heat transfer fluid, and the other based on the use of solid particles. The current work describes ASTRI’s progress towards design and construction of a 700kWth prototype sodium receiver suited to this type of system, which will be installed and tested on Solar Field 2 at the CSIRO Energy Centre in Newcastle, Australia. The receiver is a cavity receiver with a circular aperture oriented at a tilt down towards the centre of the heliostat field.  Inside the cavity are ten vertical tube banks in a semi-circular arrangement, with sodium flowing from the centre to the outside in a serpentine manner. Optical and thermal modelling at design point predicts aperture interception efficiency of 95.3%, receiver efficiency of 90.9% and thus a combined interception and receiver efficiency of 86.6%.  Conservative flux limits are set based on the tube material’s (Alloy 625) time independent tensile strength, which is dominated by creep for the sodium temperatures considered. In the event of incident, the receiver is designed to drain and a door closes over the aperture to limit smoke egress. Insulation is SiO2-CaO-MgO blanket, and all pipes are heat traced. Fabrication of the receiver was completed in July 2022 and first on-sun testing is expected in September 2023.

Funder

Australian Renewable Energy Agency

Publisher

TIB Open Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3