Development of a Hybrid-Electric Medium-HD Demonstrator Vehicle with a Pent-Roof SI Natural Gas Engine

Author:

Wallace Julian1,Mitchell Robert1,Rao Sandesh1,Jones Kevin1,Kramer Dustin1,Wang Yanyu1,Chambon Paul1,Sjovall Scott1,Williams D. Ryan1

Affiliation:

1. Southwest Research Institute

Abstract

<div class="section abstract"><div class="htmlview paragraph">In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, hybridization and lower carbon-intensity fuels can offer a low-cost, near-term solution for CO<sub>2</sub> reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO<sub>2</sub> emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO<sub>2</sub> reduction over the baseline diesel vehicle and ultra-low NOx emissions. The development included the conversion of a 5.2 L diesel engine to spark-ignited natural gas with an aluminum, pent-roof cylinder head to provide a diesel-like torque curve and engine NOx emissions below 0.02 g/hp-hr (0.027 g/kWh). In parallel, a vehicle modeling study was performed to determine an optimum hybrid architecture for an Isuzu F-Series truck to provide the largest impact on fleet emissions. Variations of motor/generator location, battery voltage, and storage capacity were evaluated. Finally, the demonstration truck was built with the prototype engine and P2 plug-in hybrid system to provide performance and emissions validation of the overall concept. The vehicle was tested over several HD drive cycles, including the Greenhouse Gas Emissions Model (GEM) certification cycles, and provided satisfactory performance. The GEM cycle results demonstrated a greater than 25% reduction in CO<sub>2</sub> for the multi-purpose and urban subcategories. For the regional subcategory testing with a high percentage of highway speeds operation, the vehicle demonstrated a 13% reduction in CO<sub>2</sub> due primarily to the lower carbon intensity fuel.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3