Freevalve: Control and Optimization of Fully Variable Valvetrain-Enabled Combustion Strategies for Steady-State Part Load Performance and Transient Rise Times

Author:

Elmagdoub Abdelrahman W. M.,Carlson Urban,Halmearo Mattias,Turner James,Brace Chris,Akehurst Sam,Zhang Nic

Abstract

<div class="section abstract"><div class="htmlview paragraph">In passenger car development, extreme ICE downsizing trends have been observed over the past decade. While this comes with fuel economy benefits, they are often obtained at the expense of Brake Mean Effective Pressure (BMEP) rise time in transient engine response. Through advanced control strategies, the use of Fully Variable Valvetrain (FVVT) technologies has the potential to completely mitigate the associated drivability-penalizing constraints. Adopting a statistical approach, key part load performance engine parameters are analyzed. Design-of-Experiment data is generated using a validated GT-Power model for a Freevalve-converted turbocharged Ultraboost engine. Subsequently, MathWorks' Model Based Calibration (MBC) toolbox is utilized to interpret the data through model fitments using neural network models of optimized architectures. Calibration Generation (CAGE) toolbox is ultimately used to identify best-case look-up tables for the part load steady state performance points based on concluded, case specific, BSFC values. Transient tip-in events are simulated using a step pedal input to full load from the optimized part load points and total rise times are analyzed. For conventional non-FVVT configurations it has been demonstrated that part load cases with higher EGR rates concluded significantly higher T10 (time to 10% of BMEP) values, while T90 (time to 90% of BMEP) and T10-90 (time between 10% and 90% of BMEP) at the tip-in transient were least influenced by residual content. Assuming a Pareto optimal front, this leads to propose that advanced valve control strategies enabled by FVVT technologies, targeting maximum scavenging and optimized EGR rates, are capable of eliminating the potential burden that is turbocharger lag, otherwise sustained in boosted engines as a result of limited cam-based valvetrains, on tip-in transient events from a minimum BSFC steady state part load initial condition.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3