Spectroscopy Based Tool for Temperature Evaluation during the Spark Discharge

Author:

Merola S.,Irimescu A.,Vaglieco B.M.,Di Iorio S.,Sementa P.

Abstract

<div class="section abstract"><div class="htmlview paragraph">In this work, a new tool is proposed and tested to investigate the early phase of spark ignition (SI) processes. The diagnostic tool is based on Spark-Induced Breakdown Spectroscopy (SIBS), a consolidated technique in which the plasma formed by spark generation between two electrodes is used as the excitation source for optical emission spectroscopy (OES).</div><div class="htmlview paragraph">The spark discharge of a commercial ignition system was analyzed through OES to correlate the characteristic evolution of the discharge with the formation of reactive species inside the activated volume. Specifically, an open-source spectrum simulation program (Lifbase) together with the NIST database was used for defining relations between the ultraviolet emission bands of nitrogen first negative system (FNS_N<sub>2</sub>) in the glow phase for different plasma temperature and pressure values.</div><div class="htmlview paragraph">Besides plasma density and ion energy, electron and gas temperatures are important parameters that govern the reaction rate of active species generation through dissociation, excitation, and ionization processes and thus influence the chemistry of the spark discharge. It is well known that the electrical discharge occurring between the spark plug electrodes can be divided into three phases (breakdown, arc and glow discharge), characterized by different time scales. The breakdown occurrence causes the gas molecules in the ignition area to break into atoms and ions. Molecular recombination starts after some hundreds nanoseconds from breakdown, thus leading to significantly different spectral emissions. Consequently, if measurements are triggered after the time at which breakdown occurs, molecule and molecular radical bands will be dominating in the spectral emission instead of the atomic lines.</div><div class="htmlview paragraph">The proposed methodology takes advantage of the peculiarity of N<sub>2</sub> molecules to exchange rotational and translational energy with heavy particles faster than with electrons. For this reason it is possible that rotational distributions quickly achieve thermodynamic equilibrium with the bulk gas. Therefore, a convenient way to determine the gas temperature is through the measurement of the roto-vibrational band spectrum of nitrogen.</div><div class="htmlview paragraph">The validation of the developed tool was performed by considering the emission of excited species detected in ambient conditions. Successively, the methodology was applied in an optically accessible combustion chamber of a spark ignition research engine under motored and fired conditions, and further validated by temperature evaluations based on CN and OH emission bands ratio. The proposed tool allowed obtaining deeper insight into the complex physical and chemical phenomena underlying the ignition event.</div></div>

Publisher

SAE International

Subject

Artificial Intelligence,Mechanical Engineering,Fuel Technology,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3