Application of Machine Learning Models to Enable Virtual Development of High Performance Brake Systems

Author:

Antanaitis David1

Affiliation:

1. General Motors LLC

Abstract

<div class="section abstract"><div class="htmlview paragraph">The once rarified field of Artificial Intelligence, and its subset field of Machine Learning have very much permeated most major areas of engineering as well as everyday life. It is already likely that few if any days go by for the average person without some form of interaction with Artificial Intelligence. Inexpensive, fast computers, vast collections of data, and powerful, versatile software tools have transitioned AI and ML models from the exotic to the mainstream for solving a wide variety of engineering problems. In the field of braking, one particularly challenging problem is how to represent tribological behavior of the brake, such as friction and wear, and a closely related behavior, fluid consumption (or piston travel in the case of mechatronic brakes), in a model. This problem has been put in the forefront by the sharply crescendo-ing push for fast vehicle development times, doing high quality system integration work early on, and the starring role of analysis-based tools in enabling this strategy. Focusing even further, brake corner systems under duress – such as high temperatures, and high braking power, can exhibit highly non-linear and in-stop varying behavior that can be exceedingly difficult to model accurately. The present work chronicles efforts by the author and colleagues to develop machine learning models that capture this complex behavior and generalize sufficiently well to continue representing the performance of the brake under high energy driving conditions, even as the models are presented with new braking conditions that were not part of the training of the models. The utility of the models in the prediction of system-level performance is demonstrated through a case study application to calibrating a fade warning feature. The present work is shown from the perspective of a practicing engineer, not a data scientist, with some details that may prove mundane to the latter – but a strong motivation behind this work is to share the experience of getting started and some practical lessons learned towards the use of these powerful machine learning tools to solving practical problems in the field of brake engineering.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3