Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

Author:

Upadhyaya Avaneesh1,Sebben Simone1,Willeson Emil2,Minelli Guglielmo2

Affiliation:

1. Chalmers University of Technology

2. Volvo Car Corporation

Abstract

<div class="section abstract"><div class="htmlview paragraph">The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets. A parametric study was conducted by spatially moving the cooling intakes, with constant total area, across the front of the vehicle. Power consumption of the fan had to be considered when maintaining the desired airflow rate through intakes without sufficient ram air. As expected, moving intakes away from the stagnation region increased drag. Lateral outward movements altered the flow fields around the front wheels, while vertical movements of the intake only showed marginal flow changes across the top and bottom halves of the vehicle. The flow characteristics towards the rear were unaffected, and the changes observed were mostly local. Including power requirements of the fan, increments up to 15% of total vehicle drag were observed.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3