Compatibility between Handling Agility and Stability of Vehicle using Rear Wheel Steering with Dual-Link Actuators

Author:

Park Jaeyong1,Na Sungsoo2

Affiliation:

1. Hyundai & Kia Corp.

2. Korea University

Abstract

<div class="section abstract"><div class="htmlview paragraph">The experimental control findings of increasing the handling performance so that the yaw motion of the vehicle is nimble and stable utilizing the upgraded rear wheel steering system equipped with dual-link actuators are shown in this work. In most automobiles, the steering axis is well defined in front suspension. However, unless the vehicle's rear suspension is a sort of double wishbone, the steering axis is not clearly defined in regular multi-link rear suspensions. As a result, most current automobiles have a suspension geometry feature in which the camber and toe angles change at the same time when the assist link is changed to steer the back wheels. To create lateral force from the rear tire while preserving maximum tire grip, the dual-link actuators control for modifying the strokes of suspension links must keep the camber angle constant and adjust only the toe angle. The relationship between the motion of two suspension link actuators and the camber angle/toe angle is found in this study, and the practicality of the control is validated by test vehicle experiments using an advanced rear-wheel steering system.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3