Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

Author:

Huang Rong1,Ni Jimin1,Wang Qiwei1,Yin Qi2

Affiliation:

1. Tongji University

2. SAIC Motor

Abstract

<div class="section abstract"><div class="htmlview paragraph">In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated. The results showed that for the compressor performance, the turbulence models and time-step parameters selection were within 3% error of the simulated and experimental values for pressure ratio and efficiency. Under high-efficiency conditions, in a fixed time step, the use of SST could achieve high prediction accuracy in pressure ratio and efficiency. For aerodynamic noise prediction, at both the blade passing frequency and its first order harmonic frequency could obtain the significant peak values of power spectrum density (PSD) for four model parameters. In addition, the turbulence models with 4° time step showed lower PSDs at high frequency (more than 15000 Hz) as compared with the PSDs of 2° time step in volute region under near-surge condition. Therefore, based on the trade-off relationship between computational accuracy and time cost, the SST model combined with the 4° time step was the best choice for the calculation of compressor performance and aerodynamic noise prediction at various conditions.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3