Representative Cyclist Collision Injury Risk Distributions for a Dense-Urban US ODD Using Naturalistic Dash Camera Data

Author:

Campolettano Eamon T.1,Scanlon John M.1,Kusano Kristofer D.1

Affiliation:

1. Waymo

Abstract

<div class="section abstract"><div class="htmlview paragraph">Automated driving systems (ADS) are designed toward safely navigating the roadway environment, which also includes consideration of potential conflict with other road users. Of particular concern is understanding the cumulative risk associated with vulnerable road users (VRUs) conflicts and collisions. VRUs represent a population of road users that have limited protection compared to vehicle occupants. These severity distributions are particularly useful in evaluating ADS real-world performance with respect to the existing fleet of vehicles. The objective of this study was to present event severity distributions associated with vehicle-cyclist collisions within an urban naturalistic driving environment by leveraging data from third-party vehicles instrumented with forward-facing cameras and a sensor suite (accelerometer sampling at 20 Hz and GPS [variable sampling frequency]). From over 66 million miles of driving, 30 collision events were identified. A global optimization routine was used on the accelerometer and GPS data to correct for sensor orientation and asynchronicity in data sampling. For each event, two key video frames were identified: the frame associated with impact and a frame associated with key vehicle kinematics (e.g. vehicle start/stop). These key frames were then mapped to the accelerometer and GPS data to determine vehicle speed at impact. For the events included in this dataset, impact speeds ranged from approximately 3.2 kph (2 mph) to 53.1 kph (33 mph). In 82% of events, the front of the vehicle struck the cyclist. Existing cyclist injury risk curves were then used to calculate the level of risk associated with the reconstructed impacts, and the probability of AIS3+ injury risk was observed to vary from minimal risk to approximately 30%. These data highlight the wide range of impact speeds and injury risk that may occur during vehicle-cyclist collisions.</div></div>

Publisher

SAE International

Reference44 articles.

1. National Center for Statistics and Analysis 2022

2. National Center for Statistics and Analysis

3. Centers for Disease Control and Prevention

4. Rosen , E. Autonomous Emergency Braking for Vulnerable Road Users IRCOBI Conference Gothenburg, Sweden 2013

5. Lubbe , N. , Wu , Y. , and Jeppsson , H. Safe Speeds: Fatality and Injury Risks of Pedestrians, Cyclists, Motorcyclists, and Car Drivers Impacting the Front of Another Passenger car as a Function of Closed Speed and Age Traffic Safety Research 2022 10.55329/vfma7555

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3