Ventrolateral Periaqueductal Gray Astrocytes Regulate Nociceptive Sensation and Emotional Motivation in Diabetic Neuropathic Pain

Author:

Yang LanORCID,Lu Jingshan,Guo Jianpeng,Chen Jian,Xiong Fangfang,Wang Xinyao,Chen Li,Yu Changxi

Abstract

Diabetic neuropathic pain (DNP) is a diabetes complication experienced by many patients. Ventrolateral periaqueductal gray (vlPAG) neurons are essential mediators of the descending pain modulation system, yet the role of vlPAG astrocytes in DNP remains unclear. The present study applied a multidimensional approach to elucidate the role of these astrocytes in DNP. We verified the activation of astrocytes in different regions of the PAG in male DNP-model rats. We found that only astrocytes in the vlPAG exhibited increased growth. Furthermore, we described differences in vlPAG astrocyte activity at different time points during DNP progression. After the 14th day of modeling, vlPAG astrocytes exhibited obvious activation and morphologic changes. Furthermore, activation of Gq-designer receptors exclusively activated by a designer drug (Gq-DREADDs) in vlPAG astrocytes in naive male rats induced neuropathic pain-like symptoms and pain-related aversion, whereas activation of Gi-DREADDs in vlPAG astrocytes in male DNP-model rats alleviated sensations of pain and promoted pain-related preference behavior. Thus, bidirectional manipulation of vlPAG astrocytes revealed their potential to regulate pain. Surprisingly, activation of Gi-DREADDs in vlPAG astrocytes also mitigated anxiety-like behavior induced by DNP. Thus, our results provide direct support for the hypothesis that vlPAG astrocytes regulate diabetes-associated neuropathic pain and concomitant anxiety-like behavior.SIGNIFICANCE STATEMENTMany studies examined the association between the ventrolateral periaqueductal gray (vlPAG) and neuropathic pain. However, few studies have focused on the role of vlPAG astrocytes in diabetic neuropathic pain (DNP) and DNP-related emotional changes. This work confirmed the role of vlPAG astrocytes in DNP by applying a more direct and robust approach. We used chemogenetics to bidirectionally manipulate the activity of vlPAG astrocytes and revealed that vlPAG astrocytes regulate DNP and pain-related behavior. In addition, we discovered that activation of Gi-designer receptors exclusively activated by a designer drug in vlPAG astrocytes alleviated anxiety-like behavior induced by DNP. Together, these findings provide new insights into DNP and concomitant anxiety-like behavior and supply new therapeutic targets for treating DNP.

Funder

National Natural Science Foundation of China

The Joint Funds for the Innovation of Science and Technology, Fujian Province

Fujian Medical University Startup Fund for Scientific Research

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3