Adult Neurogenesis Is Altered by Circadian Phase Shifts and the Duper Mutation in Female Syrian Hamsters

Author:

Bahiru Michael Seifu,Bittman Eric L.ORCID

Abstract

Cell birth and survival in the adult hippocampus are regulated by a circadian clock. Rotating shift work and jet lag disrupt circadian rhythms and aggravate disease. Internal misalignment, a state in which abnormal phase relationships prevail between and within organs, is proposed to account for adverse effects of circadian disruption. This hypothesis has been difficult to test because phase shifts of the entraining cycle inevitably lead to transient desynchrony. Thus, it remains possible that phase shifts, regardless of internal desynchrony, account for adverse effects of circadian disruption and alter neurogenesis and cell fate. To address this question, we examined cell birth and differentiation in the duper Syrian hamster (Mesocricetus auratus), aCry1-null mutant in which re-entrainment of locomotor rhythms is greatly accelerated. Adult females were subjected to alternating 8 h advances and delays at eight 16 d intervals. BrdU, a cell birth marker, was given midway through the experiment. Repeated phase shifts decreased the number of newborn non-neuronal cells in WT, but not in duper hamsters. The duper mutation increased the number of BrdU-IR cells that stained for NeuN, which marks neuronal differentiation. Immunocytochemical staining for proliferating cell nuclear antigen indicated no overall effect of genotype or repeated shifts on cell division rates after 131 days. Cell differentiation, assessed by doublecortin, was higher in duper hamsters but was not significantly altered by repeated phase shifts. Our results support the internal misalignment hypothesis and indicate thatCry1regulates cell differentiation. Phase shifts may determine neuronal stem cell survival and time course of differentiation after cell birth. Figure created with BioRender.

Funder

HHS | NIH | NHLBI | NHLBI Division of Intramural Research

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3