Neuronal Correlates of Hyperalgesia and Somatic Signs of Heroin Withdrawal in Male and Female Mice

Author:

Alvarez-Bagnarol YocastaORCID,Marchette Renata C. N.ORCID,Francis Chase,Morales Marisela,Vendruscolo Leandro F.ORCID

Abstract

AbstractOpioid withdrawal involves the manifestation of motivational and somatic symptoms. However, the brain structures that are involved in the expression of different opioid withdrawal signs remain unclear. We induced opioid dependence by repeatedly injecting escalating heroin doses in male and female C57BL/6J mice. We assessed hyperalgesia during spontaneous heroin withdrawal and somatic signs of withdrawal that was precipitated by the preferential μ-opioid receptor antagonist naloxone. Heroin-treated mice exhibited significantly higher hyperalgesia and somatic signs than saline-treated mice. Following behavioral assessment, we measured regional changes in brain activity by automated the counting of c-Fos expression (a marker of cellular activity). Using Principal Component Analysis, we determined the association between behavior (hyperalgesia and somatic signs of withdrawal) and c-Fos expression in different brain regions. Hyperalgesia was associated with c-Fos expression in the lateral hypothalamus, central nucleus of the amygdala, ventral tegmental area, parabrachial nucleus, dorsal raphe (DR), and locus coeruleus (LC). Somatic withdrawal was associated with c-Fos expression in the paraventricular nucleus of the thalamus, lateral habenula, DR, and LC. Thus, hyperalgesia and somatic withdrawal signs were each associated with c-Fos expression in unique sets of brain areas. The expression of c-Fos in the DR and LC was associated with both hyperalgesia and somatic withdrawal. Understanding common neurobiological mechanisms of acute and protracted opioid withdrawal may help identify new targets for treating this salient aspect of opioid use disorder.

Funder

HHS | NIH | National Institute on Drug Abuse

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3