Isoflurane Alters Presynaptic Endoplasmic Reticulum Calcium Dynamics in Wild-Type and Malignant Hyperthermia-Susceptible Rodent Hippocampal Neurons

Author:

Osman Vanessa,Speigel Iris,Patel Kishan,Hemmings Hugh C.

Abstract

AbstractVolatile anesthetics reduce excitatory synaptic transmission by both presynaptic and postsynaptic mechanisms which include inhibition of depolarization-evoked increases in presynaptic Ca2+concentration and blockade of postsynaptic excitatory glutamate receptors. The presynaptic sites of action leading to reduced electrically evoked increases in presynaptic Ca2+concentration and Ca2+-dependent exocytosis are unknown. Endoplasmic reticulum (ER) of Ca2+release via ryanodine receptor 1 (RyR1) and uptake by SERCA are essential for regulation intracellular Ca2+and are potential targets for anesthetic action. Mutations in sarcoplasmic reticulum (SR) release channels mediate volatile anesthetic-induced malignant hyperthermia (MH), a potentially fatal pharmacogenetic condition characterized by unregulated Ca2+release and muscle hypermetabolism. However, the impact of MH mutations on neuronal function are unknown. We used primary cultures of postnatal hippocampal neurons to analyze volatile anesthetic-induced changes in ER Ca2+dynamics using a genetically encoded ER-targeted fluorescent Ca2+sensor in both rat and mouse wild-type (WT) neurons and in mouse mutant neurons harboring theRYR1T4826I MH-susceptibility mutation. The volatile anesthetic isoflurane reduced both baseline and electrical stimulation-evoked increases in ER Ca2+concentration in neurons independent of its depression of presynaptic cytoplasmic Ca2+concentrations. Isoflurane and sevoflurane, but not propofol, depressed depolarization-evoked increases in ER Ca2+concentration significantly more in mouseRYR1T4826I mutant neurons than in wild-type neurons. TheRYR1T4826I mutant neurons also showed markedly greater isoflurane-induced reductions in presynaptic cytosolic Ca2+concentration and synaptic vesicle (SV) exocytosis. These findings implicate RyR1 as a molecular target for the effects of isoflurane on presynaptic Ca2+handling.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3