Parieto-Occipital Electrocortical Dynamics during Real-World Table Tennis

Author:

Studnicki AmandaORCID,Ferris Daniel P.ORCID

Abstract

Traditional human electroencephalography (EEG) experiments that study visuomotor processing use controlled laboratory conditions with limited ecological validity. In the real world, the brain integrates complex, dynamic, multimodal visuomotor cues to guide the execution of movement. The parietal and occipital cortices are especially important in the online control of goal-directed actions. Table tennis is a whole-body, responsive activity requiring rapid visuomotor integration that presents a myriad of unanswered neurocognitive questions about brain function during real-world movement. The aim of this study was to quantify the electrocortical dynamics of the parieto-occipital cortices while playing a sport with high-density electroencephalography. We included analysis of power spectral densities (PSDs), event-related spectral perturbations, intertrial phase coherences (ITPCs), event-related potentials (ERPs), and event-related phase coherences of parieto-occipital source-localized clusters while participants played table tennis with a ball machine and a human. We found significant spectral power fluctuations in the parieto-occipital cortices tied to hit events. Ball machine trials exhibited more fluctuations in θ power around hit events, an increase in intertrial phase coherence and deflection in the event-related potential, and higher event-related phase coherence between parieto-occipital clusters as compared with trials with a human. Our results suggest that sport training with a machine elicits fundamentally different brain dynamics than training with a human.

Funder

National Science Foundation

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3