Detection of Memory Engrams in Mammalian Neuronal Circuits

Author:

Niewinski Nicole E.,Hernandez DeyanellORCID,Colicos Michael A.ORCID

Abstract

It has long been assumed that activity patterns persist in neuronal circuits after they are first experienced, as part of the process of information processing and storage by the brain. However, these “reverberations” of current activity have not been directly observed on a single-neuron level in a mammalian system. Here we demonstrate that specific induced activity patterns are retained in mature cultured hippocampal neuronal networks. Neurons within the network are induced to fire at a single frequency or in a more complex pattern containing two distinct frequencies. After the stimulation was stopped, the subsequent neuronal activity of hundreds of neurons in the network was monitored. In the case of single-frequency stimulation, it was observed that many of the neurons continue to fire at the same frequency that they were stimulated to fire at. Using a recurrent neural network trained to detect specific, more complex patterns, we found that the multiple-frequency stimulation patterns were also retained within the neuronal network. Moreover, it appears that the component frequencies of the more complex patterns are stored in different populations of neurons and neuron subtypes.

Funder

Canadian Government | Natural Sciences and Engineering Research Council of Canada

Publisher

Society for Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3