Divergent Changes in PBN Excitability in a Mouse Model of Neuropathic Pain

Author:

Torruella-Suárez María L.,Neugebauer Benjamin,Flores-Felix Krystal,Keller AsafORCID,Carrasquillo Yarimar,Cramer NathanORCID

Abstract

The transition from acute to chronic pain involves maladaptive plasticity in central nociceptive pathways. Growing evidence suggests that changes within the parabrachial nucleus (PBN), an important component of the spino–parabrachio–amygdaloid pain pathway, are key contributors to the development and maintenance of chronic pain. In animal models of chronic pain, PBN neurons become sensitive to normally innocuous stimuli and responses to noxious stimuli become amplified and more often produce afterdischarges that outlast the stimulus. Using ex vivo slice electrophysiology and two mouse models of neuropathic pain, sciatic cuff and chronic constriction of the infraorbital nerve (CCI-ION), we find that changes in the firing properties of PBN neurons and a shift in inhibitory synaptic transmission may underlie this phenomenon. Compared to PBN neurons from shams, a larger proportion of PBN neurons from mice with a sciatic cuff were spontaneously active at rest, and these same neurons showed increased excitability relative to shams. In contrast, quiescent PBN neurons from cuff mice were less excitable than those from shams. Despite an increase in excitability in a subset of PBN neurons, the presence of afterdischarges frequently observed in vivo were largely absent ex vivo in both injury models. However, GABAB-mediated presynaptic inhibition of GABAergic terminals is enhanced in PBN neurons after CCI-ION. These data suggest that the amplified activity of PBN neurons observed in rodent models of chronic pain arise through a combination of changes in firing properties and network excitability.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

HHS | NIH | National Center for Complementary and Integrative Health

Publisher

Society for Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3