Phase-Dependent Visual and Sensorimotor Integration of Features for Grasp Computations before and after Effector Specification

Author:

Guo Lin Lawrence,Niemeier Matthias

Abstract

The simple act of viewing and grasping an object involves complex sensorimotor control mechanisms that have been shown to vary as a function of multiple object and other task features such as object size, shape, weight, and wrist orientation. However, these features have been mostly studied in isolation. In contrast, given the nonlinearity of motor control, its computations require multiple features to be incorporated concurrently. Therefore, the present study tested the hypothesis that grasp computations integrate multiple task features superadditively in particular when these features are relevant for the same action phase. We asked male and female human participants to reach-to-grasp objects of different shapes and sizes with different wrist orientations. Also, we delayed the movement onset using auditory signals to specify which effector to use. Using electroencephalography and representative dissimilarity analysis to map the time course of cortical activity, we found that grasp computations formed superadditive integrated representations of grasp features during different planning phases of grasping. Shape-by-size representations and size-by-orientation representations occurred before and after effector specification, respectively, and could not be explained by single-feature models. These observations are consistent with the brain performing different preparatory, phase-specific computations; visual object analysis to identify grasp points at abstract visual levels; and downstream sensorimotor preparatory computations for reach-to-grasp trajectories. Our results suggest the brain adheres to the needs of nonlinear motor control for integration. Furthermore, they show that examining the superadditive influence of integrated representations can serve as a novel lens to map the computations underlying sensorimotor control.

Funder

Canadian Government | NSERC | RES'EAU-WaterNET

Publisher

Society for Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3