Genetic Reduction of Insulin Signaling Mitigates Amyloid-β Deposition by Promoting Expression of Extracellular Matrix Proteins in the Brain

Author:

Sano Toshiharu,Ochiai Toshitaka,Nagayama Takeru,Nakamura Ayaka,Kubota Naoto,Kadowaki Takashi,Wakabayashi Tomoko,Iwatsubo Takeshi

Abstract

The insulin/IGF-1 signaling (IIS) regulates a wide range of biological processes, including aging and lifespan, and has also been implicated in the pathogenesis of Alzheimer's disease (AD). We and others have reported that reduced signaling by genetic ablation of the molecules involved in IIS (e.g., insulin receptor substrate 2 [IRS-2]) markedly mitigates amyloid plaque formation in the brains of mouse models of AD, although the molecular underpinnings of the amelioration remain unsolved. Here, we revealed, by a transcriptomic analysis of the male murine cerebral cortices, that the expression of genes encoding extracellular matrix (ECM) was significantly upregulated by the loss of IRS-2. Insulin signaling activity negatively regulated the phosphorylation of Smad2 and Smad3 in the brain, and suppressed TGF-β/Smad-dependent expression of a subset of ECM genes in brain-derived cells. The ECM proteins inhibited Aβ fibril formationin vitro, and IRS-2 deficiency suppressed the aggregation process of Aβ in the brains of male APP transgenic mice as revealed by injection of aggregation seedsin vivo. Our results propose a novel mechanism in AD pathophysiology whereby IIS modifies Aβ aggregation and amyloid pathology by altering the expression of ECM genes in the brain.SIGNIFICANCE STATEMENTThe insulin/IGF-1 signaling (IIS) has been recognized as a regulator of aging, a leading risk factor for the onset of Alzheimer's disease (AD). In AD mouse models, genetic deletion of key IIS molecules markedly reduces the amyloid plaque formation in the brain, although the molecular underpinnings of this amelioration remain elusive. We found that the deficiency of insulin receptor substrate 2 leads to an increase in the expression of various extracellular matrices (ECMs) in the brain, potentially through TGF-β/Smad signaling. Furthermore, some of those ECMs exhibited the potential to inhibit amyloid plaque accumulation by disrupting the formation of Aβ fibrils. This study presents a novel mechanism by which IIS regulates Aβ accumulation, which may involve altered brain ECM expression.

Funder

MEXT | Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Daiichi-Sankyo Foundation of Life Science

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3