Diminished Repetition Suppression Reveals Selective and Systems-Level Face Processing Differences in ASD

Author:

D'Mello Anila M.ORCID,Frosch Isabelle R.,Meisler Steven L.,Grotzinger Hannah,Perrachione Tyler K.,Gabrieli John D.E.

Abstract

Repeated exposure to a stimulus results in reduced neural response, or repetition suppression, in brain regions responsible for processing that stimulus. This rapid accommodation to repetition is thought to underlie learning, stimulus selectivity, and strengthening of perceptual expectations. Importantly, reduced sensitivity to repetition has been identified in several neurodevelopmental, learning, and psychiatric disorders, including autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by challenges in social communication and repetitive behaviors and restricted interests. Reduced ability to exploit or learn from repetition in ASD is hypothesized to contribute to sensory hypersensitivities, and parallels several theoretical frameworks claiming that ASD individuals show difficulty using regularities in the environment to facilitate behavior. Using fMRI in autistic and neurotypical human adults (females and males), we assessed the status of repetition suppression across two modalities (vision, audition) and with four stimulus categories (faces, objects, printed words, and spoken words). ASD individuals showed domain-specific reductions in repetition suppression for face stimuli only, but not for objects, printed words, or spoken words. Reduced repetition suppression for faces was associated with greater challenges in social communication in ASD. We also found altered functional connectivity between atypically adapting cortical regions and higher-order face recognition regions, and microstructural differences in related white matter tracts in ASD. These results suggest that fundamental neural mechanisms and system-wide circuits are selectively altered for face processing in ASD and enhance our understanding of how disruptions in the formation of stable face representations may relate to higher-order social communication processes.SIGNIFICANCE STATEMENTA common finding in neuroscience is that repetition results in plasticity in stimulus-specific processing regions, reflecting selectivity and adaptation (repetition suppression [RS]). RS is reduced in several neurodevelopmental and psychiatric conditions including autism spectrum disorder (ASD). Theoretical frameworks of ASD posit that reduced adaptation may contribute to associated challenges in social communication and sensory processing. However, the scope of RS differences in ASD is unknown. We examined RS for multiple categories across visual and auditory domains (faces, objects, printed words, spoken words) in autistic and neurotypical individuals. We found reduced RS in ASD for face stimuli only and altered functional connectivity and white matter microstructure between cortical face-recognition areas. RS magnitude correlated with social communication challenges among autistic individuals.

Funder

HHS | NIH | National Institute of Mental Health

Simons Center for the Social Brain

Brain and Behavior Research Foundation

HHS | NIH | National Institute on Deafness and Other Communication Disorders

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3