Subthalamic Nucleus Deep Brain Stimulation in the Beta Frequency Range Boosts Cortical Beta Oscillations and Slows Down Movement

Author:

Werner Lucy M.ORCID,Schnitzler Alfons,Hirschmann JanORCID

Abstract

Recordings from Parkinson's disease (PD) patients show strong beta-band oscillations (13–35 Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100 Hz) ameliorates motor symptoms and reduces beta activity in the basal ganglia and motor cortex, the effects of low-frequency DBS (<30 Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal. Here, we investigated how subthalamic nucleus (STN) beta-band DBS affects cortical beta oscillations and motor performance. We recorded the magnetoencephalogram of 14 PD patients (nine males) with DBS implants while on their usual medication. Following a baseline recording (DBS OFF), we applied bipolar DBS at beta frequencies (10, 16, 20, 26, and 30 Hz) via the left electrode in a cyclic fashion, turning stimulation on (5 s) and off (3 s) repeatedly. Cyclic stimulation was applied at rest and during right-hand finger tapping. In the baseline recording, we observed a negative correlation between the strength of hemispheric beta power lateralization and the tap rate. Importantly, beta-band DBS accentuated the lateralization and reduced the tap rate proportionally. The change in lateralization was specific to the alpha/beta range (8–26 Hz), outlasted stimulation, and did not depend on the stimulation frequency, suggesting a remote-induced response rather than entrainment. Our study demonstrates that cortical beta oscillations can be manipulated by STN beta-band DBS. This manipulation has consequences for motor performance, supporting a causal role of beta oscillations.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Society for Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3