Selective Activation of Subthalamic Nucleus Output Quantitatively Scales Movements

Author:

Friedman Alexander D.,Yin Henry H.

Abstract

The subthalamic nucleus (STN) is a common target for deep brain stimulation (DBS) treatments of Parkinsonian motor symptoms. According to the dominant model, the STN output can suppress movement by enhancing inhibitory basal ganglia (BG) output via the indirect pathway, and disrupting STN output using DBS can restore movement in Parkinson's patients. But the mechanisms underlying STN DBS remain poorly understood, as previous studies usually relied on electrical stimulation, which cannot selectively target STN output neurons. Here, we selectively stimulated STN projection neurons using optogenetics and quantified behavior in male and female mice using 3D motion capture. STN stimulation resulted in movements with short latencies (10–15 ms). A single pulse of light was sufficient to generate movement, and there was a highly linear relationship between stimulation frequency and kinematic measures. Unilateral stimulation caused movement in the ipsiversive direction (toward the side of stimulation) and quantitatively determined head yaw and head roll, while stimulation of either STN raises the head (pitch). Bilateral stimulation does not cause turning but raised the head twice as high as unilateral stimulation of either STN. Optogenetic stimulation increased the firing rate of STN neurons in a frequency-dependent manner, and the increased firing is responsible for stimulation-induced movements. Finally, stimulation of the STN's projection to the brainstem mesencephalic locomotor region was sufficient to reproduce the behavioral effects of STN stimulation. These results question the common assumption that the STN suppresses movement, and instead suggest that STN output can precisely specify action parameters via direct projections to the brainstem.SIGNIFICANCE STATEMENTOur results question the common assumption that the subthalamic nucleus (STN) suppresses movement, and instead suggest that STN output can precisely specify action parameters via direct projections to the brainstem.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

National Institute of Mental Health and Neurosciences

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3