The Dynamics of Tapered-roller Bearings – A Bottom-up Validation Study
-
Published:2023-06-29
Issue:7-8
Volume:69
Page:289-298
-
ISSN:2536-3948
-
Container-title:Strojniški vestnik - Journal of Mechanical Engineering
-
language:
-
Short-container-title:sv-jme
Author:
Razpotnik Matej,Bischof Thomas,Boltežar Miha
Abstract
Rolling-element bearings are one of the most important elements when predicting the noise of rotating machinery. As a major connecting point between the rotating and non-rotating parts, their dynamic properties have to be accurately known. In this investigation we present a bottom-up approach to characterising the dynamics of the rolling-element bearing. A special test device was designed and built to assess the quality of the well-established analytical modelling approach of Lim and Singh. Two types of bearings were tested, i.e., the ball and tapered-roller types. The dynamic properties were observed by investigating the frequency-response functions. In addition, non-rotating as well as rotating test scenarios were checked. It was shown that the ball bearing model adequately predicts the system’s response, whereas the tapered-roller bearing model requires modifications. These results were further confirmed with a quasi-static load-displacement numerical evaluation, where a full finite-element model serves as the reference.
Publisher
Faculty of Mechanical Engineering
Subject
Mechanical Engineering,Mechanics of Materials