Disequilibrium Compaction, Fluid expansion and unloading effects: Analysis from well log and its pore pressure implication in Jay Field, Niger Delta

Author:

Abbey Chukwuemeka Patrick,Osita Meludu Chukwudi,Sunday Oniku Adetola,Dabari Mamman Yusuf

Abstract

     Disequilibrium compaction, sometimes referred to as under compaction, has been identified as a major mechanism of abnormal pore pressure buildup in sedimentary basins. This is attributed to the interplay between the rate at which sediments are deposited and the rate at which fluids associated with the sediments are expelled with respect to burial depth. The purpose of this research is to analyze the mechanisms associated with abnormal pore pressure regime in the sedimentary formation. The study area “Jay field” is an offshore Niger Delta susceptible to abnormal pore pressure regime in the Agbada –Akata formations of the basin. Well log analysis and cross plots were applied to determine the under compacted zone in the formation since compaction increases with burial depth. It was observed that porosity and permeability of the deeper depth (3700 m to end of Well) are higher than those of the shallow part (3000 – 3700 m). This is against what is expected from normal compacted sediment, demonstrating disequilibrium compaction in deposition. Furthermore, it reveals that sedimentation rate was high, making it unable for the sediments to expunge its fluid as expected. Density and acoustic wave increase with depth in normal compaction trend. However, the reverse that was identified in the mapped interval is attributed to disequilibrium compaction, unloading, clay diagenesis, and fluid expansion. The cross plot divulges sediments at the deeper depth had lower density and acoustic wave value with increased porosity when compared to those at shallow depth. This forms the basis that the sediments from this mapped interval experienced disequilibrium and unloading traceable to clay diagenesis during and after deposition, respectively.

Publisher

University of Baghdad College of Science

Subject

General Biochemistry, Genetics and Molecular Biology,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3