Photonic crystal nanolasers in polydimethylsiloxane thin film for sensing quantities leading to strain

Author:

Lu Tsan-WenORCID,Lin Kuang-Ming,Wang Zhen-Yu,Lee Po-TsungORCID

Abstract

We propose and realize a 1D photonic crystal nanocavity laser embedded in a polydimethylsiloxane (PDMS) thin film. The nanolaser in PDMS exhibits a significant optical response to structural deformation. It can be attached to object surfaces or integrated into different configurations, enabling the detection of different quantities that induce strain in the film. In experiments, this nanolaser can detect temperature variations or micrometer-scale bending degrees by attaching it to a temperature-controllable or bendable plate, respectively. Moreover, we further utilize the film as a diaphragm of a chamber to demonstrate its potential as a highly sensitive pressure gauge and chemical sensor. By adjusting the thickness of the PDMS thin film and the position of the nanolaser, we experimentally achieved a minimum detectable gas pressure variation of 0.12 kPa and a sensing dynamic range of 46 dB. We also investigate the optical response of the nanolaser to the swelling of the PDMS thin film induced by different organic solvents in experiments. The experimental wavelength shift rates over time are proportional to different chemical vapors’ PDMS swelling ratios, which can be used to identify specific chemical vapors within the chamber that induce PDMS swelling. Based on the experimental results and the capability of reattaching to different objects or configurations, we believe that our PhC nanolaser demonstrated herein holds significant potential as a highly sensitive mechanical and chemical sensor.

Funder

National Science and Technology Council (NSTC), Taiwan

Academia Sinica

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3