SIM reconstruction framework for high-speed multi-dimensional super-resolution imaging

Author:

Zeng Hui1ORCID,Liu Guoxuan1,Zhao Rong1

Affiliation:

1. Tsinghua University

Abstract

Structured illumination microscopy (SIM) holds great promise for live cell imaging applications due to its potential to obtain multidimensional information such as intensity, spectrum and polarization (I, λ , p) at high spatial-temporal resolution, enabling the observation of more complex dynamic interactions between subcellular structures. However, the reconstruction results of polarized samples are prone to artifacts because all current SIM reconstruction frameworks use incomplete imaging models which neglect polarization modulation. Such polarization-related artifacts are especially prevalent for SIM reconstruction using a reduced number of raw images (RSIM) and severely undermine the ability of SIM to capture multi-dimensional information. Here, we report a new SIM reconstruction framework (PRSIM) that can recover multi-dimensional information (I, λ, p) using a reduced number of raw images. PRSIM adopts a complete imaging model that is versatile for normal and polarized samples and uses a frequency-domain iterative reconstruction algorithm for artifact-free super-resolution (SR) reconstruction. It can simultaneously obtain the SR spatial structure and polarization orientation of polarized samples using 6 raw SIM images and can perform SR reconstruction using 4 SIM images for normal samples. In addition, PRSIM has less spatial computational complexity and achieves reconstruction speeds tens of times higher than that of the state-of-the-art non-iterative RSIM, making it more suitable for large field-of-view imaging. Thus, PRSIM is expected to facilitate the development of SIM into an ultra-high-speed and multi-dimensional SR imaging tool.

Funder

CETC Haikang Group-Brain Inspired Computing Joint Research Center

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3