Deep learning reconstruction algorithm for frequency-resolved optical gating

Author:

Zeng Yuanhang1,He Zijian1,Guo Xinhua1,Zhu Guangzhi1,Zhu Xiao1

Affiliation:

1. National Engineering Research Center for Laser Processing

Abstract

In general, delay operation is the most time-consuming stage in frequency-resolved optical gating (FROG) technology, which limits the use of FROG for high-speed measurement of ultrashort laser pulses. In this work, we propose and demonstrate the reconstruction of ultrashort optical pulses by employing the sequence-to-sequence (Seq2Seq) model with attention, theoretically. To our knowledge, this is the first deep learning framework capable of accurately reconstructing ultrashort pulses using very partial spectrograms. The root mean squared error (RMSE) of the pulse amplitude reconstruction and phase reconstruction on the overall test dataset are 9.5 × 10−4 and 0.20, respectively. Compared with the classic FROG recovery algorithm based on two-dimensional phase retrieval algorithms, the use of our model can shorten the spectral measurement time to 1/8 of the original time or even less. Meanwhile, the time required for pulse reconstruction using our model is roughly 0.2 s. To our knowledge, the pulse reconstruction speed of our model exceeds all current iteration-based FROG recovery algorithms. We believe that this study can greatly facilitate the use of FROG for high-speed measurements of ultrashort pulses.

Funder

National Key Research and Development Program of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3