Maximizing energy utilization in DMD-based projection lithography

Author:

Deng Ming-Jie1,Zhao Yuan-Yuan1,Liang Zi-Xin1,Chen Jing-Tao1,Zhang Yang1ORCID,Duan Xuan-Ming1

Affiliation:

1. Jinan University

Abstract

In digital micromirror device (DMD)-based projection photolithography, the throughput largely depends on the effectiveness of the laser energy utilization, which is directly correlated to the diffraction efficiency of DMD. Here, to optimize the DMD diffraction efficiency and thus the laser energy utilization, we calculate the diffraction efficiencies Ediffraction of DMD with various pitch sizes at wavelengths ranging from 200 nm to 800 nm, using the two-dimensional blazed grating diffraction theory. Specifically, the light incident angle is optimized for 343 nm laser and 7.56 μm pitch-size DMD, and the maximum single-order diffraction efficiency Ediffraction is increased from 40% to 96%. Experimentally, we use the effective energy utilization ηeff = Ediffraction,(m,n)/Σ[Ediffraction,(m,n)] at the entrance pupil plane of the objective to verify the effectiveness of the optimized illumination angle in a lithography illumination system with parallel beams of two wavelengths (343 nm and 515 nm). The ηeff of a “blaze” order at a 34° angle of incidence can be optimized up to 88%. The experimental results are consistent with the tendency of the calculated results, indicating that this optimization model can be used to improve the energy utilization of projection lithography with the arbitrarily designable wavelengths and the DMD’s pitch size.

Funder

Guangzhou Basic and Applied Basic Research Project

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Science and Technology Planning Project of Guangzhou

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3