Abstract
A method called the optimal demodulated Lorentzian spectrum is employed to precisely quantify the narrowness of a laser’s linewidth. This technique relies on the coherent envelope demodulation of a spectrum obtained through short delayed self-heterodyne interferometry. Specifically, we exploit the periodic features within the coherence envelope spectrum to ascertain the delay time of the optical fiber. Furthermore, the disparity in contrast within the coherence envelope spectrum serves as a basis for estimating the laser’s linewidth. By creating a plot of the coefficient of determination for the demodulated Lorentzian spectrum fitting in relation to the estimated linewidth values, we identify the existence of an optimal Lorentzian spectrum. The corresponding laser linewidth found closest to the true value is deemed optimal. This method holds particular significance for accurately measuring the linewidth of lasers characterized as narrow or ultranarrow.
Funder
111 Project
PCSIRT
1331 KSC
National Natural Science Foundation of China
National Key Research and Development Program of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献