Transition from triggered super-radiance to seed amplification in N2 + lasing

Author:

Cao Jincheng,Fu Yao,Wang Siqi,Chen Junyan,Cong Xun,Li Helong1,Xu HuailiangORCID

Affiliation:

1. Jilin University

Abstract

Air lasing induced by laser filamentation opens a new route for research on atmospheric molecular physics and remote sensing. The generation of air lasing is composed of two processes, i.e., building up optical gain of air molecules in femtosecond time scale and emitting coherent radiation in picosecond time scale. Here, we focus on the emission mechanisms of N2+ air lasing and reveal, by examining the intensities and temporal profiles of N2+ lasing at 391 nm generated respectively in a time-varying polarization-modulated and a linearly polarized pump laser field under different nitrogen gas pressures, that the N2+ lasing can emit through either triggered super-radiance or seed amplification. We find that the two pressure-sensitive factors, i.e., the dipole dephasing time T2 and the population inversion density n, determine which of these two mechanisms dominates the N2+ lasing emission process, enabling manipulation of the transition from triggered super-radiance to seed amplification or vice versa. Our findings clarify the emission mechanism of N2+ lasing under different pressures and provide a deeper understanding of N2+ air lasing not only in the establishment of optical gain but also in the lasing emission process.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3