Affiliation:
1. Huazhong University of Science and Technology
Abstract
We report an efficient method to generate arbitrary three-dimensional (3D) parallel multifoci inside a material. Taking into account the numerical aperture of the objective lens and the refractive index of the material, the Ewald cap was modified with a longer radius, then the whole 3D intensity distribution inside the material could be calculated using only a single Fourier transform (FT). By introducing the adaptive weight coefficient, the uniformity of the 3D multifoci improves from 81.3% to 98.9%. By adjusting the axial resolution of the Ewald cap, the uniformity of the axial multifoci improves from 85.9% to 99.7%. In the experiment, we have realized one-dimensional (1D), 2D, and 3D structures inside the fused silica, which are in excellent agreement with the simulation results. The experimental results of the ”H-U-S-T” structure demonstrate that customized arbitrary intensity distribution inside the material can be realized.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Key Research and Development Project of Hubei Province, China
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献