FPM-WSI: Fourier ptychographic whole slide imaging via feature-domain backdiffraction

Author:

Zhang Shuhe12ORCID,Wang Aiye3,Xu Jinghao3,Feng Tianci3,Zhou Jinhua2ORCID,Pan An3ORCID

Affiliation:

1. Maastricht University Medical Center +

2. Anhui Medical University

3. University of Chinese Academy of Sciences

Abstract

Fourier ptychographic microscopy (FPM) theoretically provides a solution to the trade-off between spatial resolution and field of view (FOV), and has promising prospects in digital pathology. However, block reconstruction and then stitching has become an unavoidable procedure for reconstruction of large FOV due to vignetting artifacts. This introduces digital stitching artifacts, as the existing image-domain optimization algorithms are highly sensitive to systematic errors. Such obstacles significantly impede the advancement and practical implementation of FPM, explaining why, despite a decade of development, FPM has not gained widespread recognition in the field of biomedicine. We report a feature-domain FPM (FD-FPM) based on the structure-aware forward model to realize stitching-free, full-FOV reconstruction. The loss function is uniquely formulated in the feature domain of images, which bypasses the troublesome vignetting effect and algorithmic vulnerability via feature-domain backdiffraction. Through massive simulations and experiments, we show that FD-FPM effectively eliminates vignetting artifacts for full-FOV reconstruction, and still achieves impressive reconstructions despite the presence of various systematic errors. We also found it has great potential in recovering the data with a lower spectrum overlapping rate, and in realizing digital refocusing without a prior defocus distance. With FD-FPM, we achieved full-color and high-throughput imaging (4.7 mm diameter FOV, 336 nm resolution in the blue channel) free of blocking-and-stitching procedures on a self-developed Fourier ptychographic microscopy whole slide imaging platform. The reported FD-FPM shows the value of FPM for various experimental circumstances, and offers physical insights useful for the developments of models for other computational imaging techniques. The reported platform demonstrates high-quality, high-speed imaging and low cost, and could find applications in many fields of biomedical research, as well as in clinical applications.

Funder

National Natural Science Foundation of China

Key Research and Development Projects of Shaanxi Province

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3