Estimation of underwater acoustic direction-of-arrival using the probe beam deflection technique

Author:

Yu Rongzhao1,Li Xin1,Zhen Yifan1,Xue Bin1ORCID

Affiliation:

1. Tianjin University

Abstract

This paper proposes a method of estimating the underwater acoustic direction-of-arrival using several laser beams impinging on a propagating underwater acoustic wave. The deflection of the laser beam caused by the spatial variation of the optical refractive index, which is further due to the modulation of the acoustic wave, reflects the information of direction-of-arrival and is sensed by the position sensitive detector (PSD). The sensing of the minute displacement on the PSD, in fact, introduces an extra dimension in the depth direction, which is a significant advantage over the conventional piezoelectric sensing regime. The employment of the extra sensing dimension can overcome several shortcomings, represented by spatial aliasing and phase ambiguity, existing in the current direction-of-arrival estimating methods. In addition, the ringing phenomenon of the piezoelectric effect is greatly reduced in the proposed laser-based sensing regime. By the flexibility of placing the laser beams, a prototype of the hydrophone is designed and manufactured, and a series of testing is performed. The results show that, benefiting from the probe beam deflection technique and combining the rough estimate and fine calculation, the resolution of the underwater acoustic direction-of-arrival can be improved to better than 0.016°, which can support and reform many underwater applications such as underwater acoustic communication, underwater detection, and ocean monitoring.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Tianjin City

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3