Tunable pattern recognition of optical QPSK data using optical correlation and direct detection

Author:

Alhaddad Abdulrahman1ORCID,Minoofar AmirORCID,Ko Wing,Karapetyan NarekORCID,Ramakrishnan MuralekrishnanORCID,Zhou Huibin,Duan YuxiangORCID,Jiang Zile,Su XinzhouORCID,Wang YingningORCID,Zeng Ruoyu,Song HaoORCID,Almaiman Ahmed2ORCID,Tur Moshe3ORCID,Habif Jonathan L.4,Willner Alan E.5

Affiliation:

1. Fouad Alghanim & Sons Group of Companies

2. King Saud University

3. School of Electrical Engineering, Tel Aviv University

4. University of Southern California, Information Sciences Institute

5. University of Southern California

Abstract

Performing pattern recognition via correlation in the optical domain has potential advantages, including: (i) high-speed operation at the line rate and (ii) tunability and scalability by operating on the optical wave properties. Such pattern recognition might be performed on quadrature-phase-shift-keying (QPSK) data transmitted over an optical network, which generally requires using coherent detection to distinguish the phase levels of the correlator output. To enable simpler detection, we combine optical correlation with optical biasing to experimentally demonstrate tunable and scalable QPSK pattern recognition using direct detection. The pattern is applied by adjusting the relative phases of the local pumps. Delayed QPSK signals, a coherent bias tone, and local pumps undergo nonlinear wave-mixing in a periodically poled lithium niobate (PPLN) waveguide to perform optical correlation and biasing. The biased correlator output is captured using direct detection, where the highest power level corresponds only to the pattern. Multiple QPSK pattern recognitions are achieved error-free over 3072 symbols using power thresholding values of (i) 0.78 at a 5-Gbaud rate and 0.73 at a 10-Gbaud rate for 2-symbol pattern recognition and (ii) 0.81 at a 5-Gbaud rate and 0.79 at a 10-Gbaud rate for 3-symbol pattern recognition.

Funder

Defense Advanced Research Projects Agency

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3