Evaluation of flip-chip bonding electrical connectivity for ultra-large array infrared detector

Author:

Li Huihao12,Wang Jindong1ORCID,Chen Yan13,Liao Qingjun1,Sun Changhong1ORCID,Ye Zhenhua1ORCID

Affiliation:

1. Shanghai Institute of Technical Physics

2. University of Chinese Academy of Sciences

3. Chinese University of Geosciences

Abstract

Flip-chip bonding is a key technology for infrared focal plane array (IRFPA) detectors. Due to the high cost of device preparation, the ultra-large array infrared detector cannot be directly used for the flip-chip bonding experiment, and the connectivity rate cannot be measured. To evaluate the flip-chip bonding process, a test device which has the same interconnecting structure as current IRFPA detectors is proposed. Indium bumps are electrically extracted to test electrodes. Electrical measurements were performed to characterize the connection and adhesion of the indium bumps and to calculate the connectivity rate. The electrical connectivity characteristics of the test devices correspond to the observation results of the indium bump extrusion, effectively detecting the interconnecting anomalies such as disconnection, adhesion, overall misalignment, etc., and verifying the feasibility of the test method. The test device has similar multi-layer components and thermal properties as HgCdTe infrared detector for process evaluation and post-processing experiment. The connectivity rate of the test device is up to 100%, and remains above 99% after thermal recycle experiment. The contact resistance of the interconnecting structure is calculated to be about 31.84 Ω based on the test results.

Funder

Innovative Project of Shanghai Institute of Technical Physics, Chinese Academy of Sciences

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3