Affiliation:
1. Harbin Institute of Technology
Abstract
The terahertz absorption fingerprint spectrum is crucial for qualitative spectral analysis, revealing the rotational or vibrational energy levels of numerous biological macromolecules and chemicals within the THz frequency range. However, conventional sensing in this band is hindered by weak interactions with trace analytes, leading to subtle signals. In this Letter, an all-dielectric metasurface array is proposed to enhance the absorption fingerprint spectrum using quasi-bound states in the continuum (BIC) resonance. The observable quasi-BIC resonance is achieved by breaking the symmetry of the C2v structure. The periodic dimensions of the structure are adjusted to excite quasi-BIC resonances at different frequencies, thereby enhancing the fingerprint spectra of four different substances. By exploiting the correlation between the Q-factor and absorption across different frequencies, calibration of the molecular absorption fingerprint spectrum obtained through metasurface sensing yields precise enhanced absorption fingerprint spectra for various substances within the 0.55–1.6 THz range. Our Letter introduces a novel, to the best of our knowledge, strategy for trace sensing in the THz frequency range, demonstrating the promising potential for enhanced absorption fingerprint spectrum sensing.
Funder
National Natural Science Foundation of China
Key Core Technology Research Project for Strategic Industry Chains of Xi’an Science and Technology Bureau
Key Research and Development Program of Shaanxi Province
Youth Innovation Team of Shaanxi Universities
Seed Fund for Creativity and Innovation of Postgraduates of Xi'an University of Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献