High-power, gigahertz repetition frequency self-mode-locked Ho:GdVO4 laser resonantly pumped by a Tm-doped fiber laser

Author:

Kang Panqiang1ORCID,Zhang Xinlu1ORCID,Jing Xiaofan1,Shen Changchang1,Huang Jinjer1ORCID,Wang Yulei23,Lu Zhiwei23

Affiliation:

1. Tiangong University

2. Hebei University of Technology

3. Hebei Key Laboratory of Advanced Laser Technology and Equipment

Abstract

A self-mode-locked Ho:GdVO4 laser with the GHz pulse repetition frequency oscillation near 2.06 µm was demonstrated for the first time to our knowledge. The output performances of the self-mode-locked Ho:GdVO4 laser were investigated for a few output coupler transmittances at the pulse repetition frequency of 1.89 GHz. At the incident pump power of 8.12 W, the maximum average output power was as high as 2.28 W, corresponding to the slope efficiency and optical-to-optical efficiency of 36.3% and 28.1%, respectively. This is the maximum average output for the 2 µm self-mode-locked solid-state laser with a GHz pulse repetition frequency. This work provides a new way for generating an efficient and a high-power ultrafast pulse laser with a GHz repetition frequency in the 2 µm wave band.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3