Watt-level output power and near-diffraction-limit beam quality mid-infrared Ho:GdVO4 self-Raman laser at 2.5 µm

Author:

Kang Panqiang1ORCID,Zhang Xinlu1ORCID,Jing Xiaofan1,Chen Conghui1,Zhang Longyi1,Huang Jinjer1ORCID

Affiliation:

1. Tiangong University

Abstract

We demonstrate an efficient active Q-switched Ho:GdVO4 self-Raman laser at 2500 nm for the first time, to our knowledge. Using Ho:GdVO4 crystal as the gain medium for both the 2048nm fundamental laser and the 2500 nm Raman laser, the output performances of a new mid-infrared self-Raman laser were investigated. The maximum average output power of 1.45 W was achieved at an incident pump power of 22.5 W, with a slope efficiency of 25.8%, for an output transmittance of 30% and a pulse repetition frequency of 15 kHz. The maximum single pulse energy of 96.7 µJ with a pulse width of 11.35 ns was obtained, corresponding to the peak power of 8.5 kW. The beam quality was near diffraction limited with the M2 factors of 1.15 and 1.06 along the x and y directions. Moreover, adopting the two-end output way of the fundamental laser and the Raman laser, the Raman gain coefficient of Ho:GdVO4 crystal was estimated to be 1.14 cm/GW at 2048nm. This work shows that Ho:GdVO4 is an excellent self-Raman laser crystal for the generation of high power Raman laser at 2.5 µm.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3