Self-consistent description of relaxation processes in systems with ultra- and deep-strong coupling

Author:

Sergeev Timofey T.1234,Zyablovsky Alexander A.1235,Andrianov Evgeny S.123,Lozovik Yurii E.246

Affiliation:

1. Moscow Institute of Physics and Technology

2. Dukhov Research Institute of Automatics (VNIIA)

3. Institute for Theoretical and Applied Electromagnetics

4. Institute of Spectroscopy Russian Academy of Sciences

5. Kotelnikov Institute of Radioengineering and Electronics RAS

6. MIEM at National Research University Higher School of Economics

Abstract

An ultra-strong coupling regime takes place in a compound system when a coupling strength between the subsystems exceeds one-tenth of the system eigenfrequency. It transforms into a deep-strong coupling regime when the coupling strength exceeds the system eigenfrequency. In these regimes, there are difficulties with the description of relaxation processes without explicit consideration of environmental degrees of freedom. To correctly evaluate the relaxation rates, it is necessary to consider the interaction of the system with its environment taking into account the counter-rotating wave and diamagnetic terms. We develop a self-consistent theory for the calculation of the relaxation rates in the systems, in which the coupling strength is of the order of the system eigenfrequency. We demonstrate that the increase in the coupling strength can lead to a significant decrease in the relaxation rates. In particular, we show that, for frequency-independent density of states of the environment, the relaxation rates decrease exponentially with the increase in the coupling strength. This fact can be used to suppress losses by tuning the strength coupling and the environment states.

Funder

Russian Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3