Wavelength-stepping algorithm for testing the thickness and front and back surfaces of optical plates with high signal-to-noise ratio

Author:

Servin ManuelORCID,Paez Gonzalo,Padilla MoisesORCID,Garnica Guillermo

Abstract

We propose a least-squares phase-stepping algorithm (LS-PSA) consisting of only 14 steps for high-quality optical plate testing. Optical plate testing produces an infinite number of simultaneous fringe patterns due to multiple reflections. However, because of the small reflection of common optical materials, only a few simultaneous fringes have amplitudes above the measuring noise. From these fringes, only the variations of the plate’s surfaces and thicknesses are of interest. To measure these plates, one must use wavelength stepping, which corresponds to phase stepping in standard digital interferometry. The designed PSA must phase demodulate a single fringe sequence and filter out the remaining temporal fringes. In the available literature, researchers have adapted PSAs to the dimensions of particular plates. As a consequence, there are as many PSAs published as different testing plate conditions. Moreover, these PSAs are designed with too many phase steps to provide detuning robustness well above the required level. Instead, we mathematically prove that a single 14-step LS-PSA can adapt to several testing setups. As is well known, this 14-step LS-PSA has a maximum signal-to-noise ratio and the highest harmonic rejection among any other 14-step PSA. Due to optical dispersion and experimental length measuring errors, the fringes may have a slight phase detuning. Using propagation error theory, we demonstrate that measuring distances with around 1% uncertainty produces a small and acceptable detuning error for the proposed 14-step LS-PSA.

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3