Affiliation:
1. City University of Hong Kong
Abstract
An arrow-shaped gallium phosphide nanoantenna exhibits both near-field electric field enhancement and far-field unidirectional scattering, and the interference conditions involve electric and magnetic quadrupoles as well as toroidal dipoles. By using long-wavelength approximation and exact multipole decomposition, the interference conditions required for far-field unidirectional transverse light scattering and backward near-zero scattering at multiple wavelengths are determined. The near-field properties are excellent, as exemplified by large Purcell factors of 4.5×109 for electric dipole source excitation, 464.68 for magnetic dipole source excitation, and 700 V/m for the field enhancement factor. The degree of enhancement of unidirectional scattering is affected by structural parameters such as the angle and thickness of the nanoantenna. The arrow-shaped nanoantenna is an efficient platform to enhance the electric field and achieve high directionality of light scattering. Moreover, the nanostructure enables flexible manipulation of light waves and materials, giving rise to superior near-field and far-field performances, which are of great importance pertaining to the practicability and application potential of optical antennas in applications such as spectroscopy, sensing, displays, and optoelectronic devices.
Funder
Natural Science Foundation of Heilongjiang Province
Outstanding Young and Middle-Aged Research and Innovation Team of Northeast Petroleum University
Research Initiation Project of Northeast Petroleum University
Study Abroad returnees merit based Aid Foundation in Heilongjiang Province
City University of Hong Kong
City University of Hong Kong Strategic Research Grant
China Postdoctoral Science Foundation
Local Universities Reformation and Development Personnel Training Supporting Project from Central Authorities
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献