High power cladding-pumped low quantum defect Raman fiber amplifier

Author:

Zhang YangORCID,Xu JiangmingORCID,Liang Junrui,Li Sicheng,Ye Jun1ORCID,Ma XiaoyaORCID,Yao Tianfu1,Pan Zhiyong1,Leng Jinyong1,Zhou Pu

Affiliation:

1. National University of Defense Technology

Abstract

Heat generated by the quantum defect (QD) in optically pumped lasers can result in detrimental effects such as mode instability, frequency noise, and even catastrophic damage. Previously, we demonstrated that boson-peak-based Raman fiber lasers have great potential in low QD laser generation. But their power scalability and heat load characteristics have yet to be investigated. Here, we demonstrate a boson-peak-based Raman fiber amplifier (RFA) with 815 W output power and a QD of 1.3%. The low heat generation characteristics of this low QD RFA are demonstrated. Both experimental and simulation results show that at this power level, the heat load of the low QD RFA is significantly lower than that of the conventional RFA with a QD of 4.8%. Thanks to its low heat generation characteristics, the proposed phosphosilicate-fiber-based low QD RFA provides an effective solution for the intractable thermal issue in optically pumped lasers, which is of significance in reducing the laser’s noise, improving the laser’s stability and safety, and solving the challenge of heat removing.

Funder

National Postdoctoral Program for Innovative Talents

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3