Local oscillators-free chip-enabled W-band wireless IM-DD PAM-4 data transmission with simultaneous dual-laser modulation and envelope detection

Author:

Jia Shi1ORCID,Lo Mu-Chieh2ORCID,Kong Deming1ORCID,Carpintero Guillermo3ORCID,Hu Hao1ORCID

Affiliation:

1. Technical University of Denmark

2. EFFECT Photonics

3. Universidad Carlos III de Madrid

Abstract

Wireless data traffic is expected to exponentially increase in the future, and meeting this demand will require high data rate photonic-wireless links operating in the W-band (75–110 GHz). For this purpose, pulse-amplitude-modulation with four levels (PAM-4)-based intensity modulation and direct detection (IM-DD) photonic-wireless systems are preferred due to their simplified configuration. In this Letter, we present an experimental demonstration of an IM-DD PAM-4 photonic-wireless link in the W-band, leveraging a monolithic dual-laser photonic chip to enhance integration. Through injection-locking by an optical comb, the chip generates a W-band wireless signal via photo-mixing with a photodiode. This comb injection approach facilitates the phase correlation of the chip’s two modes, resulting in a stabilized beat note. Additionally, the on-chip integration of the dual lasers enables the modulation of the two modes with a single modulator, improving the signal-to-noise ratio (SNR) while eliminating the need for extra splitters or combiners. Meanwhile, the envelope detector (ED) plays a crucial role in the simplified configuration, contributing to the overall decrease in size, weight, power, and complexity of the system. The integration of the chip-based phase-locked light source and the utilization of the ED thus signify noteworthy features of our experimental setup, which functions without the necessity of both optical and electrical local oscillators. PAM-4 signal modulation is simultaneously applied to the two coherent optical carriers. Our experiments have effectively transmitted 5 and 10 Gbaud PAM-4 W-band wireless signals in a cost-effective, lightweight, and straightforward configuration, achieving a line data rate of up to 20 Gbit/s economically. These experimental results demonstrate the practical potential of implementing fully integrated photonic-wireless transmitters.

Funder

International Research Cooperation Seed Fund of Beijing University of Technology

Danish Centre of Excellence CoE SPOC

Villum Young Investigator Program

Danmarks Frie Forskningsfond

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3