Tunable plasmonic tweezers based on graphene nano-taper for nano-bio-particles manipulation: numerical study

Author:

Khorami Ali AsgharORCID,Barahimi Behdad1ORCID,Vatani Sare1ORCID,Javanmard Athar Sadat2

Affiliation:

1. Tarbiat Modares University

2. Yasouj University

Abstract

We take advantage of graphene nano-taper plasmons to design tunable plasmonic tweezers for neuroblastoma extracellular vesicles manipulation. It consists of Si/SiO2/Graphene stack topped by a microfluidic chamber. Using plasmons of isosceles-triangle-shaped graphene nano-taper with a resonance frequency of 6.25 THz, the proposed device can efficiently trap the nanoparticles. The plasmons of graphene nano-taper generate a large field intensity in the deep sub-wavelength area around the vertices of the triangle. We show that by engineering the dimensions of the graphene nano-taper and an appropriate choice of its Fermi energy, the desired near-field gradient force for trapping can be generated under relatively low-intensity illumination of the THz source when the nanoparticles are placed near the front vertex of the nano-taper. Our results show that the designed system with graphene nano-taper of L = 1200 nm length and W = 600 nm base size and THz source intensity of I = 2 mW/µm2, can trap polystyrene nanoparticles with diameters of D = 140, 73, and 54 nm, and with trap stiffnesses of ky = 9.9 fN/nm, ky = 23.77 fN/nm, and ky = 35.51 fN/nm at Fermi energies of Ef = 0.4, 0.5, and 0.6 eV, respectively. It is well known that the plasmonic tweezer as a high-precision and non-contact means of control has potential applications in biology. Our investigations demonstrate that the proposed tweezing device with L = 1200 nm, W = 600 nm, and Ef = 0.6 eV can be utilized to manipulate the nano-bio-specimens. So that, at the given source intensity, it can trap the neuroblastoma extracellular vesicles, which are released by neuroblastoma cells and play an important role in modulating the function of neuroblastoma cells and other cell populations, as small as 88 nm at the front tip of isosceles-triangle-shaped graphene nano-taper. The trap stiffness for the given neuroblastoma extracellular vesicle is obtained as ky = 17.92 fN/nm.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3